



World of QRP

Tino Zottola, VE2GCE

August 17, 2020

Agenda

- Introduction
- Operation
- QRP History
- Classic QRP radios
- Common Architecture
- Modern kits
- Antennas
- Challenges & Solutions
- Conclusion

Introduction

What is the appeal of QRP ?

- **1.** Challenge: Long distance communication with the power of flashlight batteries.
- **2. Simplicity**: Most QRP equipment is a kit / homebrewed and is easy to operate User knows function of each component.
- **3.** Nostalgia: Reliving the old days when contacts were made with primitive equipment and each contact was an achievement.

Definition

QRP = "Reduce power"

QRP enthusiast's goal - Use minimum power possible to carry out the desired communications The difference between 100 watts and 1 watt is only 20 dB or (3.3 S units)

- 5 Watts (max) CW /FT8
- 10 Watt (max) SSB

QRPp (extreme QRP): Sub-watt region

Using 100 milliwatts, 10 milliwatts or 1 milliwatt

Commonly used benchmark is ratio of distance / power

- Montreal Charleston, SC: 1000 miles with 1000 watts
- Montreal Charleston, SC: 1000 miles with 1 watt
- Montreal Eastern Australia: 10000 miles with 1 watt
- Montreal Eastern Australia: 10000 miles with 0.001 watt \rightarrow 10,000,000 miles / watt

→ 1 mile / watt

- → 1000 miles / watt
- → 10,000 miles / watt

Operation

QRP station can be implemented in one of three ways:

- 1. Regular transceiver with power dialed down to 1 to 10 watts
- 2. QRP transmitter + conventional receiver
- 3. QRP specific transceiver(*)

*Many QRP specific transceivers use simple DCO receivers (i.e. less sensitivity than superhet). You face two challenges here:

- 1. Low Tx power
- 2. Reduced Rx sensitivity

Factors to consider before attempting QRP:

- Running QRP requires 10 times more patience than running at regular power levels
- Absolutely need to find empty frequency, it is very easy to get swamped by high power stations.
- Better to respond to CQ's from stronger stations rather than weak stations.
- Despite current low sunspot cycle period, QRP operation still possible.
- How to verify your signal is being received ?
 → Use web site <u>pskreporter.info</u> used by FT8 operators

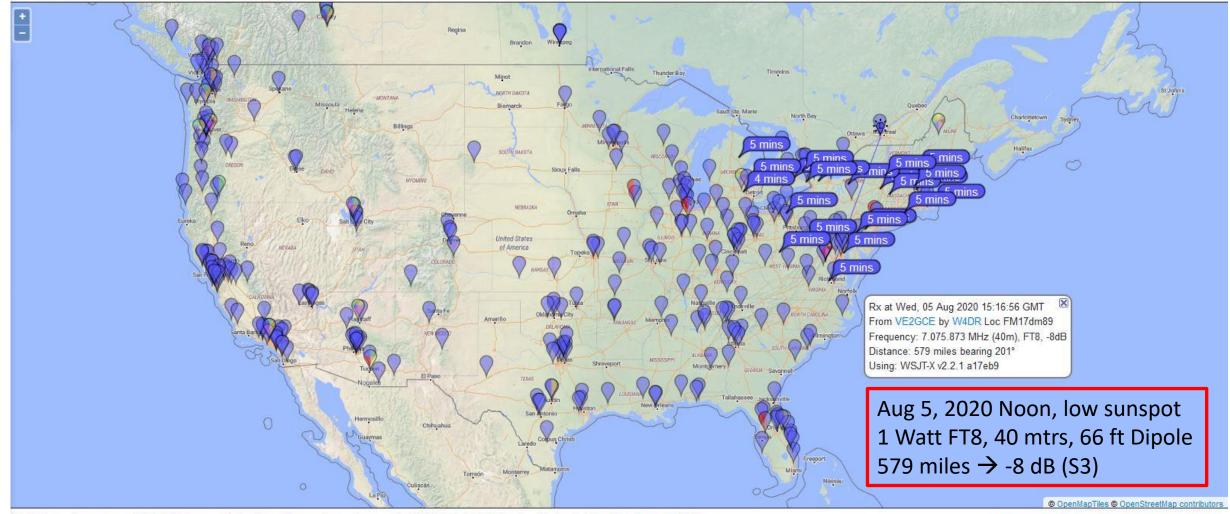
Secrets for success:

- 1) Efficient antenna system on local end (more on this later)
- 2) Efficient antenna system on remote end

 \rightarrow See <u>pskreporter.info</u> or <u>qrz.com</u> to get details of other operator's setup

Tino Zottola, VE2GCE, Aug 17, 2020

Online Propagation Testing ✓ ve2gce


✓. show signals ✓ sent by On 40m

✓ the callsign

using all modes v over the last 15 minutes V Go! Display options Permalink

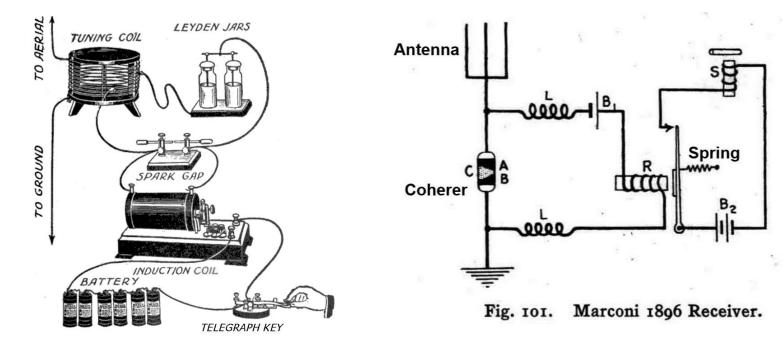
Monitoring VE2GCE (last heard 4 mins ago). Automatic refresh in 5 minutes. 23 reception reports for VE2GCE are shown as times (show logbook).

There are 765 active monitors on 40m. Show all on all bands. Legend

PSKREPORTER.INFO

Statistics - Comments to Philip Gladstone - Online discussions - Reception records: 14,089,984,632 (237/sec) - Hosting by Fast Serv Networks, LLC

FT8 vs S Units


Traditional S units

		FT8 Report	S-meter	FT8 Report	S-meter	FT8 Report	S-meter
1. Faint—signals barely perceptible	FT8 →	-26	S0	-8	S3	10	S6
		-25		-7		11	
2. Very weak signals		-24		-6		12	
3. Weak signals		-23		-5		13	
4. Fair signals		-22		-4		14	
5. Fairly good signals	CW →	-21		-3		15	
6. Good signals		-20	S1	-2	S4	16	S7
_		-19		-1		17	
7. Moderately strong signals		-18		0		18	
8. Strong signals		-17		1		19	
9. Extremely strong signals		-16		2		20	
ST Exclosing orginalo		-15		3		21	
		-14	S2	4	S5	22	S8
		-13		5		23	
 FT8 can be copied as low as S0 (-26 dB) 		-12		6		24	
• CW (DX) copy requires at least S1 (-20 dB)		-11		7		25	
CW (DA) copy requires at least 51 (-20 db)		-10		8		26	
 SSB Rx requires usually at least S3 (-8 dB) 	dB) SSB →	-9		9		27	
• Every 6 dB = 1 S unit		-8	\$3	10	S6	28	S9

History: 1895-1920

- First QRP operator was Guglielmo Marconi in 1895.
- First transmitter was spark gap transmitter operated off of batteries.
- Transmitter was wide band and under 10 watts
- Primary mode of communication until World One.
- Early amateurs made spark gap transmitters from Ford model "T" ignition coils.

Hams using tubes in their homebrew equipment, CW transmission more efficient than spark gap

- •
- Receivers used were: •
 - Tuned radio frequency: Cascaded RF stages, progressively unstable as frequency goes up
 - Super heterodyne: Superior receiver, complex and expensive because of RCA patent royalties
 - Super regenerative: Super regenerative detector •
- Band changing was done by swapping out coil plug-ins •
- Transmitters were mostly QRP, not by choice, but for economic and practical reasons. ullet
 - Cheap audio output tubes used for transmitters (10-15 watts) •
 - Commercial transmitter tubes were prohibitively expensive ٠

History: Post 1945

- After World War 2, amateur radio landscape changes thanks to technology advances and war surplus.
- Price of transmitting tubes dropped
- Amateurs were able to build / buy equipment that operated above QRP range.
- 100 watt transmitters became the norm
- Simple QRP commercially manufactured equipment for new hams introduced.
- Most new hams built one tube transmitter combined with general coverage receiver.

Tino Zottola, VE2GCE, Aug 17, 2020

QRP Specific Rigs

- In 1960's, QRP rigs with advanced features are introduced.
 - VFO, multiband, CW filter, etc.
- One of the most prolific kit mfg'ers was Heathkit
- Sadly, Heathkit out of business in 1992 after 45 yrs in the kit business.
- Many people associate QRP radios with low price
 - Ten Tec sold the Argonaut QRP radio for \$300 in 1972 (\$2000 in 2020)
- Majority of QRP rigs sold in past and present are kit radios.

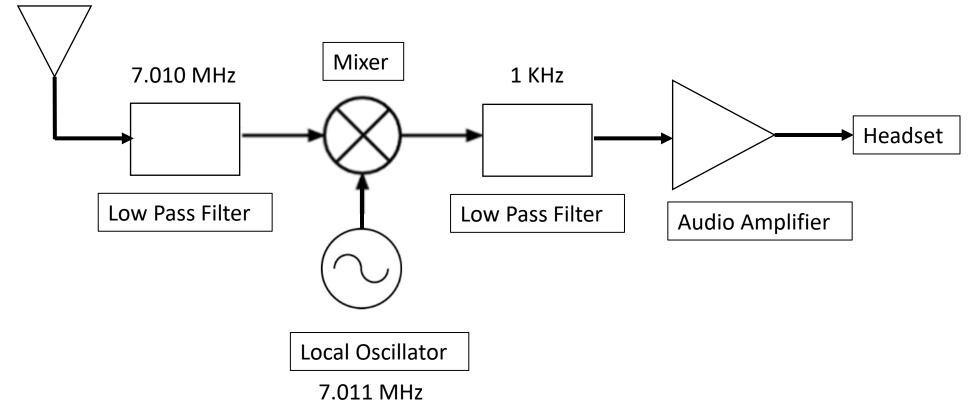
Tino Zottola, VE2GCE, Aug 17, 2020

QRP Specific Kits

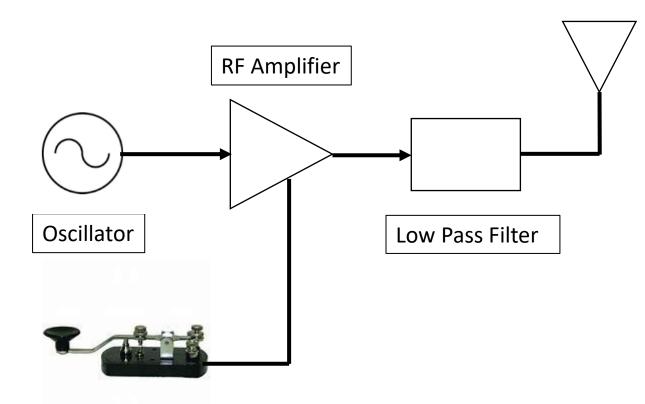
After the demise of Heathkit, many manufacturers started filling the void.

Most featured the following:

- Battery operation
- One band
- CW mode
- Major players include:
 - MFJ
 - Ten Tec (name means 10 watt technology)
 - Ramsey
- Recently many super-cheap Chinese QRP kits started appearing.

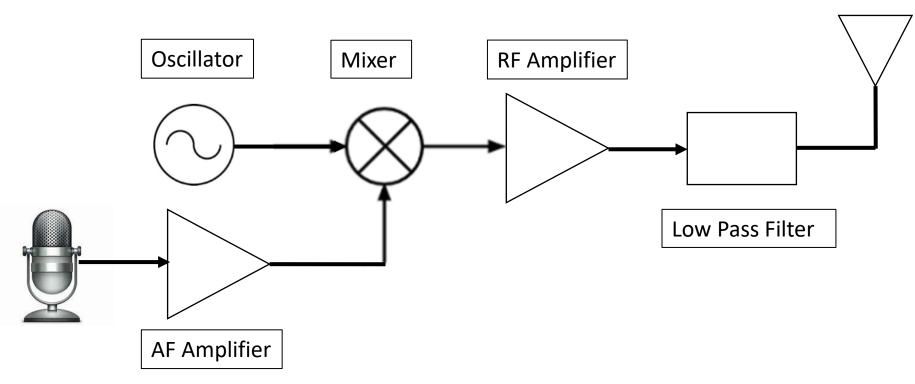


Tino Zottola, VE2GCE, Aug 17, 2020


Architecture - Receiver

Typical features:

- RF LPF on front end. *LPF often used as TX output network*
- Local oscillator is often also TX oscillator
- DCO (Direct Conversion Operation), much simple for kit builders than super heterodyne
- Audio LPF followed by audio amplifier


Architecture – Transmitter - CW

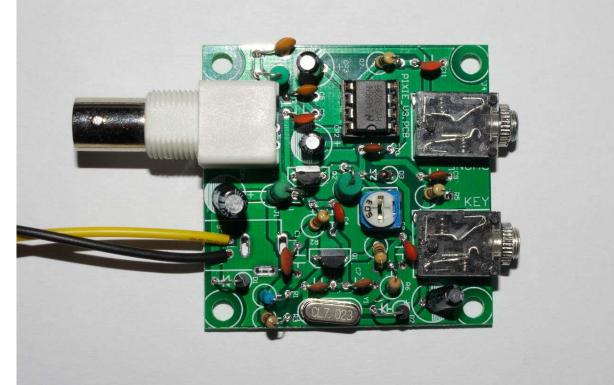
Typical features:

- Oscillator, often crystal controlled for stability
- RF Amplifier is 1 to 3 stages, resulting in 0.5 to 5 watts
- LPF TX output network
- CW most commonly used mode

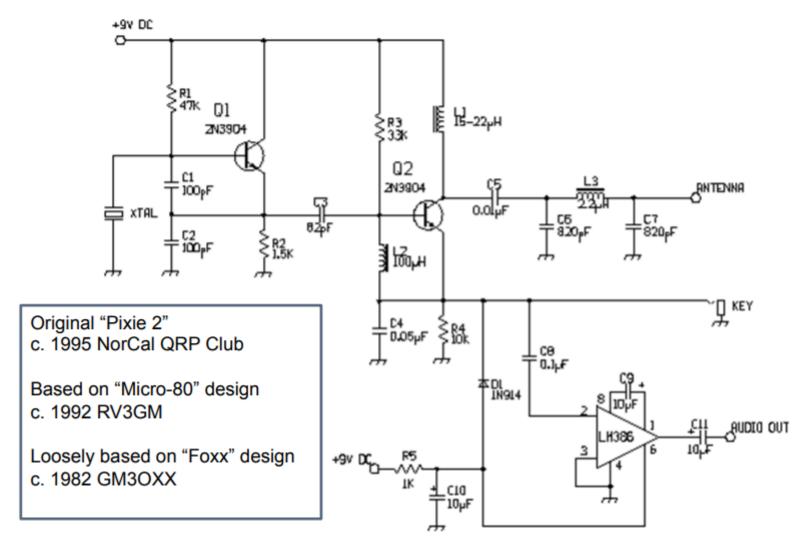
Architecture – Transmitter - DSB

Typical features:

- Oscillator
- Audio amplifier for microphone or FT8 baseband data
- Mixer creates DSB by modulating carrier oscillator with audio
- RF Amplifier is 1 to 3 stages + LPF TX output network
- DSB simplifies design, not as efficient as SSB, but much better than AM.

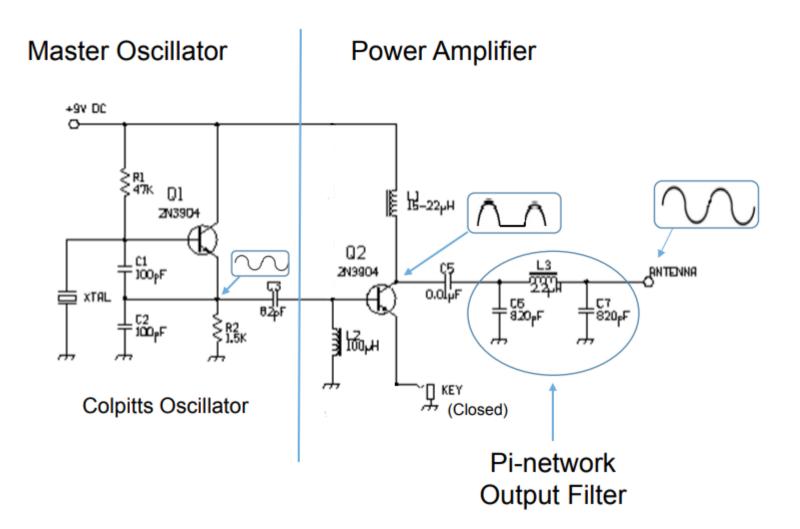

Pixie

Simplest QRP transceiver using only 4 x semiconductors. Original minimalist design by GM3OXX 'FOXX' in 1982 - 4 x transistors + manual T/R switch

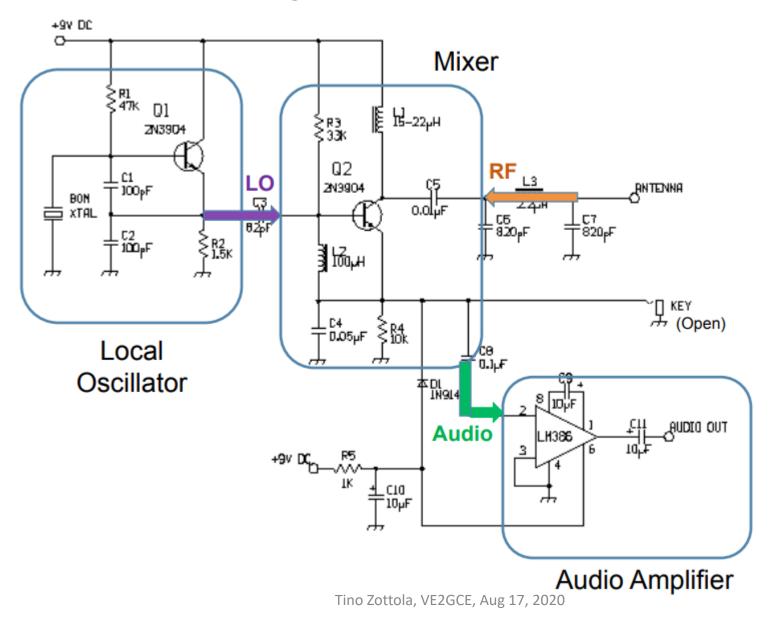

Improved by RV3GM as 'Micro-80' in 1992 - Full break-in switching

Current Version by NorCal 'Pixie' in 1995. - 2 x audio transistors replaced by LM386 chip

- CW Transceiver
 - One band: 40 meters
 - VXCO: 5 kHz tune range
 - Power source: 9 12 volts
- Transmitter
 - 2 stage transmitter + LPF
 - 500 milliwatts output
- DCO Receiver (crudely implemented)
 - Heterodyne: Antenna LPF + TX oscillator
 - Audio output LM386
- → \$10.00 Cdn on Amazon (\$2.50 USD on eBay)

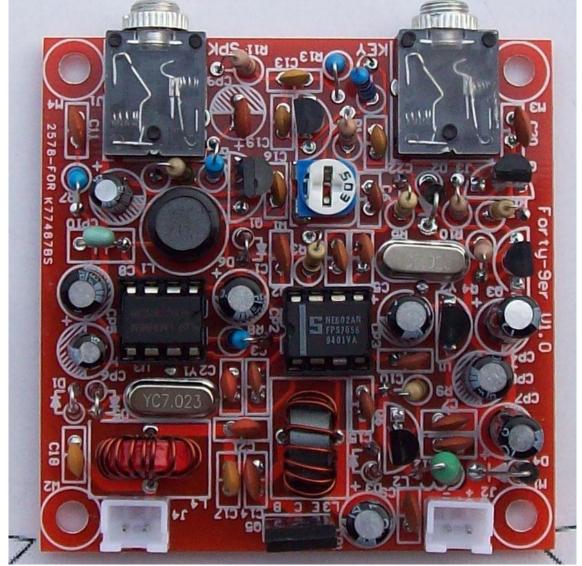


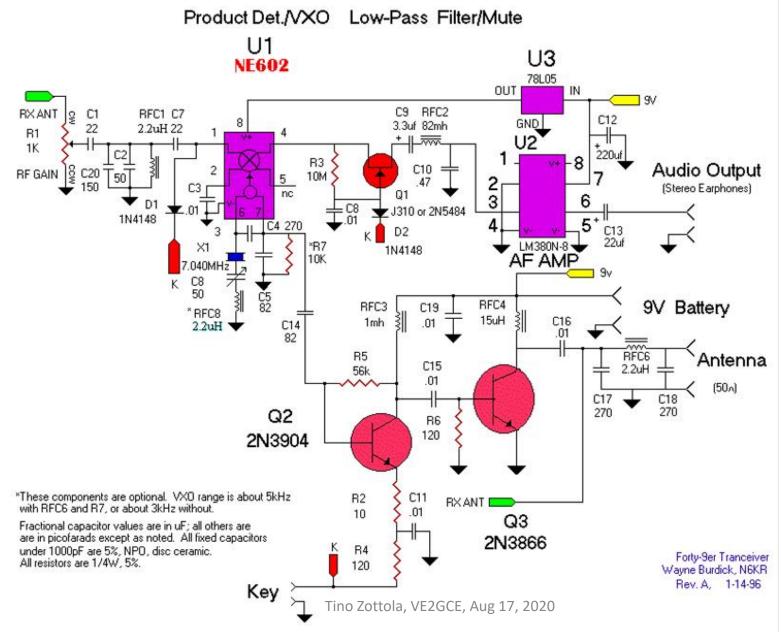
The Pixie Transceiver



<u>Note</u>: Pixie schematics taken from <u>www.w1sye.com</u> "How the Pixie transceiver works"

Pixie Key Closed - Transmitter


Pixie Key Open - Receiver


Forty-niner

Design by Wayne Burdick, N6KR, California NorCal QRP club 1996.

- Evolved from Pixie. Dedicated mixer, not relying on RF leakage
- 49'er refers to 40 meter operation and 9 volts power source and to California historical reference (i.e. gold miners of 1849)
- CW Transceiver
 - One band: 40 meters
 - VXCO: 5 khz tune range
 - Power source: 9 12 volts
- Transmitter
 - 3 stage transmitter + LPF
 - 3 watts output
- DCO Receiver
 - Heterodyne mixer NE602
 - Audio output: LM380
- → Sells for \$7.50 Cdn on Amazon
- Current Chinese kits have additional features:
 - Transistor side tone
 - Xtal RX bandpass filter

Forty-niner

QRP Guys DSB Transceiver

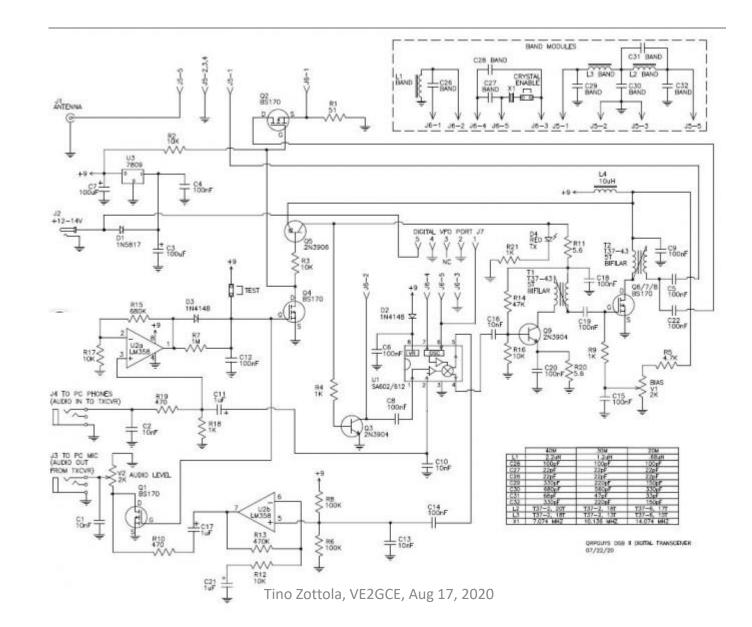
Designed by Steve Weber (KD1JV), sold by QRP Guys (Australia)

- Evolved from the 49'er
- Supports CW, phone and FT8 via DSB
- DSB Transceiver
 - Multi band: 160-17 meters
 - Uses plug-in assembly with coils and xtal per band.
 - Crystal control or VFO option
 - Power source: 9 -12 volts
- Transmitter
 - LM358 Speech Amplifier (for DSB or FT8)
 - NE602 Mixer for TX oscillator and DSB modulation
 - 3 stage transmitter + LPF \rightarrow 3 watts
- Receiver
 - Antenna LPF
 - DCO architecture: NE602 local oscillator and mixer
 - Audio output: LM358

Tino Zottola, VE2GCE, Aug 17, 2020

QRP Guys DSB Transceiver

DSB transceiver shown with optional VFO \rightarrow


Kit prices:

- \$40.00 US for transceiver with 40/30/20m coils-xtal cards
- \$30.00 US for Arduino based 160-17 meter digital VFO
- \$10.00 US for 4 x blank PCBs for 160/80/17/xx meters

No Chinese kit exist at the moment, so prices are actual fair market prices.

QRP Guys DSB Transceiver

Antennas

- Antenna and feedline must be very efficient with minimal losses
- Does not necessary imply a tower and beam
- Antenna tuners can be used for a matching
- Better to tune antenna (i.e. cut to length) for perfect match

1) Horizontal antenna (i.e. dipole or Hertz)

Pros:

- Simple, cheap, no ground needed
- Efficient, good gain

<u>Cons:</u>

• Requires real estate (66 ft for 40 meters)

 \rightarrow Tip: Inverted 'V' configuration can improve real estate footprint

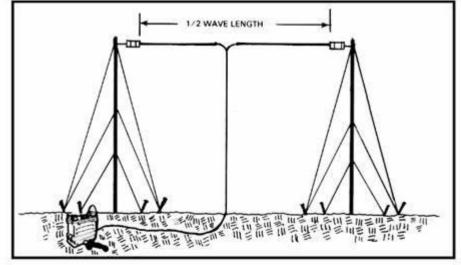


Figure 3-12. Center-fed Hertz antenna with two upright supports.

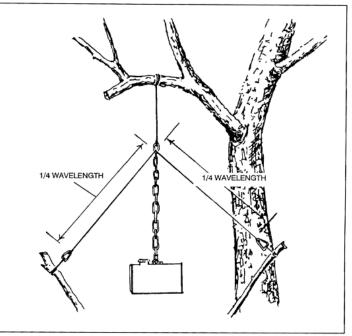


Figure D-10. Inverted Vee antenna.

Antennas

2) Vertical antenna (i.e. Marconi)

Pros:

- Real estate efficient
- Can be used for mobile and portable operation

<u>Cons:</u>

- Not as efficient as dipole, ground rod is not perfect counterpose, several dB of RX/TX loss
- \rightarrow Secret to better performance, use ¼ wavelength counterpose radials instead of ground rod
- \rightarrow Self standing antenna can be made with fiberglass rod (i.e. fishing pole)

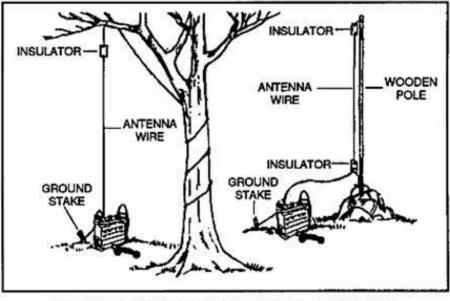
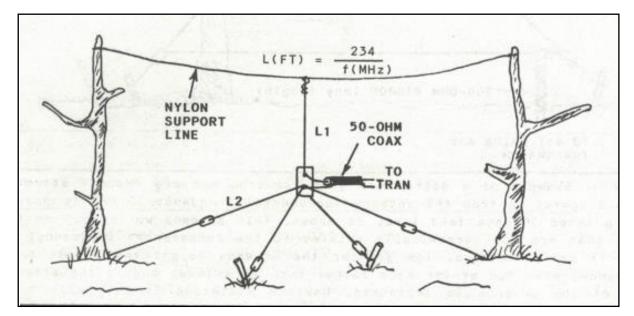



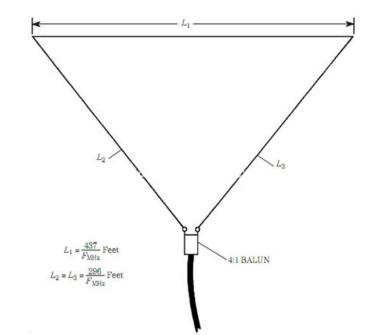
Figure 7-3. Field substitutes for support of vertical wire antennas.

Tino Zottola, VE2GCE, Aug 17, 2020

Antennas

3) Delta Loop antenna (i.e. triangle)

Pros:


- Highly efficient, full wave
- Multiband
- Horizontal or vertical installation
- No ground needed

Variations include:

- Circular loop (more efficient than delta)
- Rectangular loop (less efficient than delta)

<u>Cons:</u>

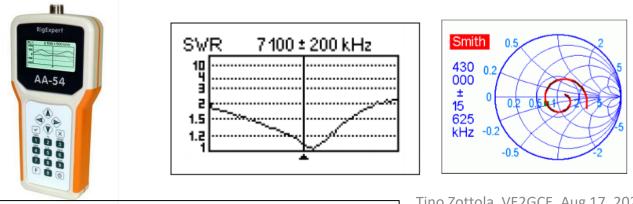
• Uses twice the wire than used by ½ wave antennas

Antenna Test Instruments

- Field Strength Meter
 - Detecting rf leaks in feedline (i.e. coax, ribbon cable, etc)
 - Testing antenna improvements
 - Determining antenna emission patterns.
- Power meter
 - Useful for setting up or diagnosing most QRP transmitters
 - Built-in dummy load option is very useful ۲
- SWR meter
 - Adjusting your antenna for maximum forwarded power and minimum reflected power
 - Cheaper CB radio units are good since they are designed for low power and have power meter built in. •
- *** All great instruments, if your antenna system is working fine or close to it.
- So how do you characterize a new and non-optimal antenna system ???

Meter

SWR / Wattmeter



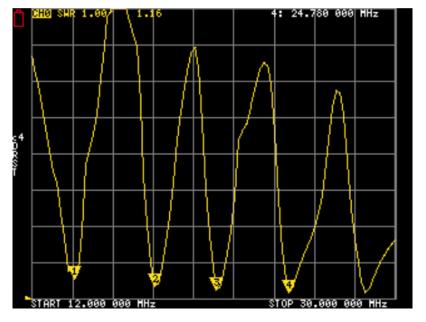
Antenna Analyzers

- In the past, characterization of an antenna system required an expensive (\$10,000's) network analyzer:
 - Hewlett Packard
 - Rohde and Schwarz

Rig Expert introduced a cheaper device \$200-\$1200 (with subset of functionality):

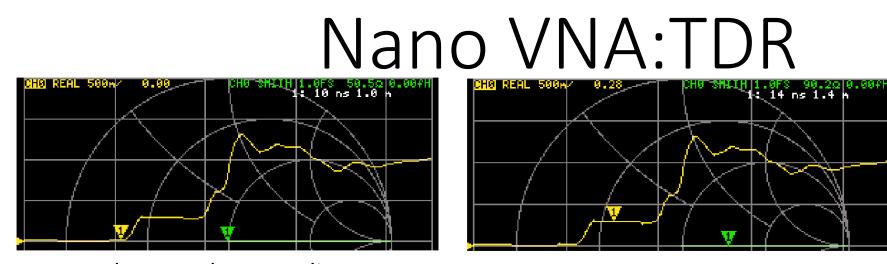
Aside: Ulrich Rohde (N1UL) is a very active operator on HF FT8

Tino Zottola, VE2GCE, Aug 17, 2020


Nano VNA

Nano Vector Network Analyzer is more affordable solution

- \$50 Cdn for unit and \$30 Cdn for connector kit
- Comes calibration kit: Short, Open and 50 ohms
- Quality is OK, no case, consists of two sandwiched PCB
- 10 kHz to 1.5 gHz range
- Touch screen with mouse knob (+ M -)
- Capable of measuring the following:
 - Standing Wave Ratio (SWR)
 - Distance Along Coax to Significant Change (TDR)
 - Performance of Common Mode Chokes (Loss vs. Freq)
 - Coax Impedance (Zo) and Coax Loss
 - Capacitance & Inductance of Discrete Components
 - Resistive and Reactive Portions of Impedance (R + jX)
 - Smith Chart
 - Antenna Radiation Patterns (ERP)


Nano VNA: SWR

SWR mode testing a multi-trap 5-band beam Start frequency = 12 MHz and end frequency = 30 MHz Sweeps every second

- SWR drops below 2:1 around 14, 18, 21, 24.5 and 28.5 MHz
- Pointer(*) at null (4) shows SWR = 1.16 @ 24.780 MHz
- * Pointer can select any point on graph

Note: All Nano VNA examples taken from Doug Hart AA3S Powerpoint Tino 2

TDR Mode: Impedance vs distance Example: 4 ft 50 ohm coax + 4 ft 93 ohm coax + open circuit

TDR and Smith chart Mode:

- 1st section measures 50.5 ohms @ 1 meter (3.2 ft)
- 2nd section measures 90.2 ohms @ 1.4 meter (4.6 ft)
- 3rd section measures infinity @ 2.5 meters (8.2 ft)

Nano VNA: Antenna Radiation

- Connect antenna UUT to the TX port (S11) of the NanoVNA via a long coax cable
- Connect omnidirectional whip antenna to the RX port (S21) of the NanoVNA.
- Measure and collect S21 readings for every 10 degree rotations of the antenna UUT
 → Rotate antenna or moving NanoVNA unit in a circular pattern
- Upload data to GNUPlot for to get radiation pattern

Note: Images and procedure from https://imgur.com/gallery/5zWhpTA

Conclusion / Recommendations

- Start QRP experience with a transceiver (power dialed down) or QRP TX + conventional receiver.
- Progress to QRP specific rig.
- You can get started in QRP as low as \$7.50 Cdn for a kit. (not a typo)
- Avoid the Pixie, start with the 49'er or QRP Guys DSB rig (or better)
- Invest time and effort in a good antenna system and tools to optimize it.
- QRP requires much patience, difference operating style than QRO operation
- Always use a clear frequency.
- You will have better luck responding to a stronger rather weak station.
- Use online sites to find stations with superior antenna systems and see your reachability.

QRP Clubs

Northern California Club

- http://norcalqrp.org/
- http://www.ncqrpp.org/

North American QRP Club

http://www.naqcc.info/

American QRP Club

<u>https://amqrp.org/</u>

Flying Pigs Club

<u>http://www.fpqrp.org/</u>

Resources

QRP Kits: https://qrpguys.com/ https://amqrp.org/kits/kits.html http://www.qrpkits.com/ https://qrp-labs.com/ http://www.crkits.com/

Vector Network Analyzer User Group: https://groups.io/g/nanovna-users/

<u>Books:</u>

- QRL Handbook, ARRL, Doug Demaw, W1FB
- QRP Basic, Rev George Dodd, G3RJV
- Minimum QRP, Peter Parker, VK3VE
- Antenna Handbook, ARRL

Questions ?